To assess the correlation between micro-computed tomography (micro-CT) and linear morphometric measurements in terms of mandibular bone levels in a modified experimental periodontitis model in rodents to study the mechanisms of association between periodontal destruction and neuroinflammation. The proposed invivo experimental periodontitis model involves the administration of oral rinses with Porphyromonas gingivalis and Fusobacterium nucleatum, four times per week during 4, 8 or 12 weeks, in 24 male Wistar Hannover rats (180 g, 5 weeks old). After euthanasia, hemi-mandibles were collected. One hemi-mandible was analysed using morphometry, while the other was assessed with micro-CT. Linear measurements were taken at the buccal aspect and furcation level for both techniques, and volumetric measurements were also obtained with micro-CT. Passing-Bablok regression analysis was used to compare the results of both techniques, with morphometric measurements serving as the reference. Moreover, Lin's Concordance correlation coefficient was calculated to assess the level of agreement. Periodontal clinical variables with neuroinflammatory parameters from the frontal cortex were used to evaluate the association between the resulting condition and neuroinflammation. Twenty-one out of the initial 24 rats were analysed. The micro-CT linear measurements demonstrated high concordance values with the linear morphometric measurements at the buccal surfaces of the roots in molars (r = 0.714) but not at the furcation area (r = 0.052). At 12 weeks, there was a significant impact on neuroinflammation with significant decreases in iNOS levels and p-mTOR levels at 4 and 8 weeks. The proposed invivo experimental periodontitis model demonstrated a high degree of correlation between morphometric and micro-CT measurements in buccal areas but not at the furcation level. Concomitantly, there was a significant temporary modulation of the neuroinflammatory response.
Read full abstract