The viability of Moniliophthora roreri inoculum was evaluated during the microfermentation process of diseased and healthy pulp-seed masses and on a range of carrier materials: aluminum, cloth, glass, paper, plastic, raffia, and rubber tire. Fungal survival was assessed before the microfermentation (0 h) and every 24 to 96 h by the growth of colonies in potato-dextrose-agar (PDA) and sporulation in seed shells. Colonies of M. roreri and sporulation on seed shells were observed from seeds not submitted to microfermentation. No growth was recovered from diseased cocoa beans after 48 h under the microfermentation. The viability of M. roreri spores recovered from carrier materials was evaluated at 7, 15, 30, 45, and 100 days after inoculation (DAI) by collecting spores and plating them on Sabouraud dextrose yeast extract agar amended with chloramphenicol (50 mg l1). The viability was determined by counting germinated and ungerminated spores under a light microscope (40×) after incubating in a moist chamber at 26 ± 2°C for 72 h. Spores maintained long-term viability on all tested carrier materials toward the end of the experiment (overall 26%) with significant differences (<0.05) among them. Maximum spore viability occurred at 7 and 15 DAI, with cloth and plastic carrier materials considered at high risk of acting as vehicles for the fungal spread. Mathematical models of spore viability over time were fit to the data using the Bayesian information criterion. Findings confirmed the importance of the fermentation process to hamper M. roreri growth and the potential of carrier materials for fungal dispersal.
Read full abstract