In this paper, we study a special class of hyperbands, i. e., a framed hyperband distribution. The study of hyperbands and their generalizations in spaces with different fundamental groups is of great interest in connection with numerous applications in mathematics and physics. A special place is occupied by regular hyperstrips, for which the characteristic planes of families of principal tangent hyperplanes do not contain directions tangent to the basal surface of the hyperstrip. In this paper, we use the method of external differential forms of E. Cartan and the group-theoretic method of G. F. Laptev. We consider a regular hyperband distribution of an affine space equipped with a field of conjugate planes with respect to an asymptotic bundle of tensors of the basic surface. The definition of the studied hyperband distribution in the affine space with respect to the 1st order frame is given and the existence theorem is proved. A sequence of fundamental geometric objects of the 1st and 2nd order of a hyperband distribution equipped with a field of conjugate planes is constructed. Fields of quasitensors are constructed that define the fields of normals of the first kind of the distribution of the characteristics of the hyperband distribution. In a differential neighborhood of the 2nd order, the fields of Transon normals of the 1st and 2nd kind are constructed. The conditions for the coincidence of the Transon normal and the Blaschke normal are found.
Read full abstract