The resting-state brain is composed of several discrete networks, which remain stable for 10-100 ms. These functional microstates are considered the building blocks of spontaneous consciousness. Electroencephalography (EEG) microstate analysis may provide insight into the altered brain dynamics underlying consciousness recovery in patients with disorders of consciousness (DOC). We aimed to analyze microstates in the resting-state EEG source space in patients with DOC, the relationship between state-specific features and consciousness levels, and the corresponding patterns of microstates and functional networks. We obtained resting-state EEG data from 84 patients with DOC (27 in a minimally conscious state [MCS] and 57 in a vegetative state [VS] or with unresponsive wakefulness syndrome). We conducted a microstate analysis of the resting-state (EEG) source space and developed a state-transition analysis protocol for patients with DOC. We identified seven microstates with distinct spatial distributions of cortical activation. Multivariate pattern analyses revealed that different functional connectivity patterns were associated with source-level microstates. There were significant differences in the microstate properties, including spatial activation patterns, temporal dynamics, state shifts, and connectivity construction, between the MCS and VS groups. Our findings suggest that consciousness depends on complex dynamics within the brain and may originate from the anterior cortex.