Ecosystem services provided by silvopastoral systems are mediated by specific management practices, environmental conditions, and overall design of the system. We hypothesized that selection of tree species affects understory forage nutritive value and productivity, light/shade environment, and microclimate. The silvopastoral system was located at the Center for Environmental Farming Systems in Goldsboro, North Carolina, USA. Three overstory tree-species were Pinus palustris (PP; longleaf pine), Pinus taeda (PT; lobloblly pine), and Quercus pagoda (QP; cherrybark oak). The understory forage component consisted of a four-way mixture of native warm-season grasses [big bluestem (Andropogon gerardii, ‘Eastern’, KY origin), eastern gamagrass (Tripsacum dactyloides, MO origin), indiangrass (Sorghastrum nutans, ‘NC ecotype’), and switchgrass (Panicum virgatum, ‘Alamo’)]. The experimental design was an RCBD with 3 replicates. There was no effect of seedbed preparation (till versus no-till) on forage establishment. Understory dry matter yield, crude protein and total digestible nutrient concentrations of the harvested forage were not affected by tree species, with the exception at the 3.5 south sampling point. Overstory effects on microclimate variables were not different among tree-species, but were more noticeable during the daytime of the summer months, and were at the most 1-degree point for temperature and temperature-humidity index and 3 points for relative humidity. The silvopasture design in our study provided year-round shade by the tree-component, with varying levels of shade (ranging from 90 to 6% of incident photosynthetic active radiation) due to geographic location, tree species, and season. Our results describe and highlight the potential of trees in a silvopasture design in the southeastern USA to mitigate changes in temperature, humidity, the temperature-humidity index, and forage productivity and as a function of tree species and at different distance from the trees.
Read full abstract