Organophosphorus extractants have been widely investigated for lanthanide recovery from ore and for application in the reprocessing of spent nuclear fuel, such as in Advanced TALSPEAK schemes. Determining the speciation of the extracted metal complex in the organic phase remains a significant challenge. A better understanding of the variability of HEH[EHP]-actinide complexes and the speciation of chelates for tetra- and hexavalent actinides can improve the predictability of actinide phase transfer in such biphasic systems. In this study, the extraction of Th(IV) and U(VI) from nitric acid media using HEH[EHP] in heptane is examined. The distribution ratio as a function of nitric acid concentration was quantified using UV-vis spectroscopy, and then the speciation of HEH[EHP]-metal complexes in the organic phase was investigated using Fourier transform infrared (FTIR) spectroscopy and low-temperature 31P nuclear magnetic resonance (NMR) spectroscopy. In addition to perturbation of the vibrational modes proximal to the phosphonic moiety in HEH[EHP] in the FTIR spectra, the appearance of a nitrate signal was found in the organic phase following extraction from the highest acidity conditions for U(VI). The 31P NMR spectra of the organic phase at a low temperature (-70 °C) exhibited a surprising number (n) of resonances (n ≥ 7 for Th(IV) and n ≥ 11 for U(VI)), with the distribution between these resonances changing with the initial concentration of nitric acid in the aqueous phase. These results indicate that the compositions of the inner and outer spheres of the extracted actinides in the organic phase are more diverse than initially thought.
Read full abstract