Metasurface-based color filters show great potential in imaging devices and color printing. However, it is still a great challenge to meet the high demand for large-area flexible displays with structural color filters. Here, a reflective color filter is developed with a sandwiched metasurface, where the photoresist grating, complementary silver grating and silicon nitride grating are sequentially stacked on the substrate. Analytical results show that bandpass reflective spectra can be achieved due to the combined influence of guided mode resonance and cavity resonance, and full-spectrum colors including three primary colors can be generated by merely varying the period of the metasurface. With only photolithography and deposition technology involved, large-area samples incorporating pixelated metasurfaces are easily fabricated. Metasurfaces with three periods of 540 nm, 400 nm and 320 nm are experimentally obtained having peak reflective efficiency of ∼ 60%, demonstrating red, green and blue colors as theoretical results. A stripe sample with the structural period varying from 250 nm to 550 nm is fabricated in an area of 10 mm × 30 mm, displaying full-color reflections as simulated. Finally, with metasurfaces of three structural periods, the pixelated Soochow University logo is fabricated in a larger area of ∼ 30 mm × 30 mm. Therefore, the proposed structure shows high compatible to roll-to-roll nano-imprinting for large-area flexible displays, with the photoresist film can be easily substituted by UV film in addition.