An urgent need exists to identify neural correlates associated with differing levels of suicide risk and develop novel, rapid-acting therapeutics to modulate activity within these neural networks. Electrophysiological correlates of suicide were evaluated using magnetoencephalography (MEG) in 75 adults with differing levels of suicide risk. During MEG scanning, participants completed a modified Life-Death Implicit Association Task. MEG data were source-localized in the gamma (30-58 Hz) frequency, a proxy measure of excitation-inhibition balance. Dynamic causal modeling was used to evaluate differences in connectivity estimates between risk groups. A proof-of-concept, open-label, pilot study of five high risk participants examined changes in gamma power after administration of ketamine (0.5 mg/kg), an NMDAR antagonist with rapid anti-suicide ideation effects. Implicit self-associations with death were stronger in the highest suicide risk group relative to all other groups, which did not differ from each other. Higher gamma power for self-death compared to self-life associations was found in the orbitofrontal cortex for the highest risk group and the insula and posterior cingulate cortex for the lowest risk group. Connectivity estimates between these regions differentiated the highest risk group from the full sample. Implicit associations with death were not affected by ketamine, but enhanced gamma power was found for self-death associations in the left insula post-ketamine compared to baseline. Differential implicit cognitive processing of life and death appears to be linked to suicide risk, highlighting the need for objective measures of suicidal states. Pharmacotherapies that modulate gamma activity, particularly in the insula, may help mitigate risk.Clinicaltrials.gov identifier: NCT02543983, NCT00397111.
Read full abstract