Full-penetration laser beam welding is characterized by a weld seam whose depth equals the material thickness. It is associated with a stable capillary and is therefore widely used for welding of sheet metal components. The realization of lightweight concepts in car body production requires the application of high-strength aluminum alloys that contain magnesium as an alloying element, which significantly influences the evaporation temperature and pressure. This change of the evaporation processes influences the geometry of the capillary and therefore its absorptance. In order to quantify the influence of magnesium on the capillary, their geometries were captured by means of high-speed synchrotron X-ray imaging during the welding process of the aluminum alloys AA1050A (Al99.5), AA5754 (AlMg3) and AA6016 (AlSi1.2Mg0.4). The 3D-geometries of the capillaries were reconstructed from the intensity distribution in the recorded X-ray images and their absorptance of the incident laser beam was determined by the analysis of the reconstructed 3D-geometry with a raytracing algorithm. The results presented in this paper capture for the first time the influence of the magnesium content in high-strength aluminum alloys on the aspect ratio of the capillary, which explains the reduced absorptance in case of full-penetration laser beam welding of aluminum alloys with a high content of volatile elements. In order to improve the absorptance in full-penetration welding, these findings provide the information required for the deduction of new optimization approaches.
Read full abstract