The aim of this study is to analyze the ballistic impact behavior of a panel made of Twaron CT736 fabric with a 9 mm Full Metal Jacket (FMJ) projectile. Three shots are fired at different velocities at this panel. The ballistic impact test procedure was carried out in accordance with NIJ 010106. The NIJ-010106 standard is a document that specifies the minimum performance requirements that protection systems must meet to ensure performance. The 9 mm FMJ projectile is, according to NIJ 010106, in threat level II, but the impact velocity is in threat level IIIA. Analysis of macro-photographs of the impact of the Twaron CT736 laminated fabric panel with a 9 mm FMJ projectile involves a detailed examination of the images to gather information about the material performance and failure mechanisms at the macro- or even meso-level (fabric/layer, thread). In this paper, we analyze numerically and experimentally a panel consisting of 32 layers, made of a single material, on impact with a 9 mm FMJ projectile. The experimental results show that following impact of the panel with three projectiles, with velocities between 414 m/s and 428 m/s, partial penetration occurs, with a different number of layers destroyed, i.e., 15 layers in the case of the projectile velocity of 414 m/s, 20 layers of material in the case of the panel velocity of 422 m/s and 22 layers destroyed in the case of the projectile velocity of 428 m/s. Validation of the simulated model is achieved by two important criteria: the number of broken layers and the qualitative appearance. Four numerical models were simulated, of which three models validated the impact results of the three projectiles that impacted the panel. Partial penetration occurs in all four models, breaking the panel in the impact area, with only one exception, i.e., the number of layers destroyed, in which case the simulation did not validate the validation criterion. The performance of Twaron CT736 fabric is also given by the indentation depth values by two methods: according to NIJ 0101.06 and by 3D scanning. The NIJ 010106 standard specifies that a panel provides protection when the indentation depth values are less than 0.44 mm.
Read full abstract