Estimating the Dead Fuel Moisture Content (DFMC) is crucial in wildfire risk management, representing a key component in forest fire danger rating systems and wildfire simulation models. DFMC fluctuates sub-daily and spatially, influenced by local weather and fuel characteristics. This necessitates models that provide sub-daily fuel moisture conditions for improving wildfire risk management. Many forest fire danger rating systems typically rely on daily fuel moisture models that overlook local fuel characteristics, with consequent impact on wildfire management. The semi-empirical parametric DFMC model proposed addresses these issues by providing hourly dead fuel moisture dynamics, with specific parameters to consider local fuel characteristics. A calibration framework is proposed by adopting Particle Swarm Optimization-type algorithm. In the present study, the calibration framework has been tested by using hourly 10-hours fuel sticks measurements. Implementing this model in forest fire danger rating systems would enhance detail in forest fire danger conditions, advancing wildfire risk management.
Read full abstract