Permeable, media transporting, components are an integral part in numerous technical applications. In gas turbines combustors, for example, gaseous oxidizer and fuel are transported separately into the burner, where they are injected and mixed, and subsequently combusted. The mixture homogeneity strongly affects the combustion performance and emissions formation and is, amongst other, determined by the spatial distribution of fuel injection ports. In this context, porous media provide the limiting case for a spatial distribution of media-injecting pores, yet is typically associated with a high pressure drop that yields a loss in efficiency. In this study, possibilities of achieving gas permeability in additively manufactured porous structures are investigated. The objective is to selectively functionalize the permeable layers for gaseous media supply with low pressure loss and, when needed, enable a targeted mixing of different gas streams. For this purpose, a laser-based powder bed fusion process (PBF-LB/M) was used in this study. It offers the opportunity to manufacture varying porosities inside complex monolithic metal parts. To produce the porous structures and to achieve gas permeability, the effect of scan rotation angle, hatch distance, build-up direction and length of the porous specimen is investigated. Due to the high temperatures present in combustion systems, the present work utilizes Inconel 718 material. The AM gas permeable specimen are experimentally characterized by means of surface topography, micro X-ray computed tomography (µXRCT) as well as flow and pressure loss test. The results show, that the AM process parameter provide effective control parameters to adjust the permeability. The strongest effect originates from the hatch distance for a given build-up direction. Depending on the scan rotation, the flow transitions from a turbulent pipe flow to a Darcy flow as present in conventional porous media. A structured alignment and connectivity of pores can be realized as evident in the µXRCT results, surface topography and the flow measurements. Residual powder, powder adhering to the pore walls and stochastic closure of pores or channels lead to deviations and need to be considered when designing respective parts. Nonetheless, the results further show that a directional dependence of the permeability and the build-up direction can be realized and controlled. Consequently, when considering the AM build-strategy in the design of components, this directed permeability can be functionalized in the generation of gas transporting and gas mixing layers separately by adjusting the AM processing parameter.