The TRITON11® fuel design is the latest Boiling Water Reactor (BWR) fuel product developed by Westinghouse, based on an 11 × 11 optimized fuel rod lattice, including mixing vane spacer grids, three large water rods and 18 part-length rods. The design offers larger fuel cycle cost saving, improved fuel reliability and increased thermal margin over previous Westinghouse fuel products. The critical power performances of the TRITON11 fuel design were assessed at the Westinghouse thermal–hydraulic FRIGG loop using a full-scale test bundle covering a wide range of BWR core conditions (covering normal operation and Anticipated Operational Occurrences) with various radial and two axial power distributions. The resulting FRIGG steady state database was simulated with Westinghouse subchannel analysis code MEFISTO-T based on a two-phase three-field approach of annular two-phase flow, accounting for the drop deposition enhancement provided by the spacer grids. A new model of local film entrainment was introduced due to the liquid “scrapping off” effects provided by the frame and side vanes of the spacer grids along the fuel channel and water rods. After spacer grid effect calibration, the steady state critical power is simulated mechanistically by power iterations up to complete local film dryout. The MEFISTO-T code can successfully predict the critical power performance of the Westinghouse TRITON11 BWR fuel design, including on part-length rods, with almost no bias and trend, within a standard deviation of about 5 %.
Read full abstract