We present an approach, a Terahertz streaking-assisted photoelectron spectrum (THz SAPS), to achieve direct observations of ultrafast coherence dynamics with timescales beyond the pulse duration. Using a 24 fs probe pulse, the THz SAPS enables us to well visualize Rabi oscillations of 11.76 fs and quantum beats of 2.62 fs between the 5S 1/2 and 5P 3/2 in rubidium atoms. The numerical results show that the THz SAPS can simultaneously achieve high resolution in both frequency and time domains without the limitation of Heisenberg uncertainty of the probe pulse. The long probe pulse promises sufficiently high frequency resolution in photoelectron spectroscopy allowing to observe Autler–Townes splittings, whereas the streaking THz field enhances temporal resolution for not only Rabi oscillations but also quantum beats between the ground and excited states. The THz SAPS demonstrates a potential applicability for observation and manipulation of ultrafast coherence processes in frequency and time domains.
Read full abstract