Object detection models are commonly used in yield estimation processes in intelligent walnut production. The accuracy of these models in capturing walnut features largely depends on the quality of the input images. Without changing the existing image acquisition devices, this study proposes a super-resolution reconstruction module for drone-acquired walnut images, named Walnut-SR, to enhance the detailed features of walnut fruits in images, thereby improving the detection accuracy of the object detection model. In Walnut-SR, a deep feature extraction backbone network called MDAARB (multilevel depth adaptive attention residual block) is designed to capture multiscale information through multilevel channel connections. Additionally, Walnut-SR incorporates an RRDB (residual-in-residual dense block) branch, enabling the module to focus on important feature information and reconstruct images with rich details. Finally, the CBAM (convolutional block attention module) attention mechanism is integrated into the shallow feature extraction residual branch to mitigate noise in shallow features. In 2× and 4× reconstruction experiments, objective evaluation results show that the PSNR and SSIM for 2× and 4× reconstruction reached 24.66 dB and 0.8031, and 19.26 dB and 0.4991, respectively. Subjective evaluation results indicate that Walnut-SR can reconstruct images with richer detail information and clearer texture features. Comparative experimental results of the integrated Walnut-SR module show significant improvements in mAP50 and mAP50:95 for object detection models compared to detection results using the original low-resolution images.
Read full abstract