DNA markers have broad applications, including marker-assisted selection (MAS) for breeding new cultivars. Currently, single nucleotide polymorphisms (SNPs) have become a preferred choice of markers for molecular geneticists and breeders. They offer many advantages, such as high abundance and coverage in the genome, codominant inheritance, locus specificity, and flexibility for high-throughput genotyping/detection formats, and they are relatively inexpensive. The availability of reference genome sequences enables precise identification of candidate genes and SNPs associated with a trait of interest through quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS). Such SNPs can be converted into markers for their application in MAS in crop breeding programs. Cleaved amplified polymorphic sequence (CAPS) markers amplify short genomic sequences around the polymorphic endonuclease restriction site. This review provides insight into the recent advancements made in the development and application of CAPS markers in several horticultural plants. We discussed many new tools that aid faster and more accurate design of CAPS markers from the whole genome resequencing (WGRS) data. The developed CAPS markers offer immense application in germplasm screening and field trials, genomic loci mapping, identifying candidate genes, and MAS of important horticultural traits such as disease resistance, fruit quality and morphology, and genetic purity.