To investigate the evolution of physical properties of sandstone under unidirectional constraint during freeze-thaw cycles, an experimental device was specifically designed. Unidirectional constraint freeze-thaw tests were performed on sandstone specimens. The study analyzed variations in the dry mass, saturated mass, and longitudinal wave velocity of the sandstone both before and after undergoing freeze-thaw cycles, as well as examining the evolution of resistivity throughout the process. Results revealed that an increase in the number of freeze-thaw cycles leads to a gradual increase in the saturated mass of sandstone, while its dry mass consistently decreases, irrespective of whether it is subjected to constraint or not. The change rates of both dry mass and saturated mass were found to be significantly lower under unidirectional constraint compared to that without constraint. With more freeze-thaw cycles, a decline in longitudinal wave velocity was noted. Under unconstrained conditions, no significant direction dependence in longitudinal wave velocity was detected. However, under unidirectional constraint, there was a smaller decrease in the longitudinal wave velocity along the direction of constraint compared to other directions. This indicates that constraint mitigates frost heave damage. In the temperature rise and maintenance stages, resistivity initially dropped, then increased prior to stabilizing at a constant value. Conversely, in temperature decrease and maintenance stages, resistivity first rose, then dipped before ultimately rising again. Temperature primarily influenced resistivity by affecting the ion movement velocity within pore water and the connectivity of the conductive network.