The relationship between primary productivity and diversity has been demonstrated across taxa and spatial scales, but for organisms with biphasic life cycles, little research has examined whether productivity of larval and adult environments influence each life stage independently, or whether productivity of one life stage's environment outweighs the influence of the other. Experimental work demonstrates that tadpoles of stream-breeding anurans can exhibit a top-down influence on aquatic primary productivity (APP), but few studies have sought evidence of a bottom-up influence of primary productivity on anuran abundance, species richness and community composition, as seen in other organisms. We examined aquatic and terrestrial primary productivity in two forest types in Borneo, along with amphibian abundance, species richness, and community composition at larval and adult stages, to determine whether there is evidence for a bottom-up influence of APP on tadpole abundance and species richness across streams, and the relative importance of aquatic and terrestrial primary productivity on larval and adult phases of anurans. We predicted that adult richness, abundance, and community composition would be influenced by terrestrial primary productivity, but that tadpole richness, abundance, and community composition would be influenced by APP. Contrary to expectations, we did not find evidence that primary productivity, or variation thereof, predicts anuran richness at larval or adult stages. Further, no measure of primary productivity or its variation was a significant predictor of adult abundance, or of adult or tadpole community composition. For tadpoles, we found that in areas with low terrestrial primary productivity, abundance was positively related to APP, but in areas with high terrestrial primary productivity, abundance was negatively related to APP, suggesting a bottom-up influence of primary productivity on abundance in secondary forest, and a top-down influence of tadpoles on primary productivity in primary forest. Additional data are needed to better understand the ecological interactions between terrestrial primary productivity, aquatic primary productivity, and tadpole abundance.
Read full abstract