The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21 per thousand salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6+/-4.9 U mg-1 and K0.5=1.31+/-0.05 mmol L-1. Stimulation of K+-phosphatase activity by magnesium (Vmax=125.3+/-7.5 U mg-1; K0.5=2.09+/-0.06 mmol L-1), potassium (Vmax=134.2+/-6.7 U mg-1; K0.5=1.33+/-0.06 mmol L-1) and ammonium ions (Vmax=130.1+/-5.9 U mg-1; K0.5=11.4+/-0.5 mmol L-1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI=304.9+/-18.3 micromol L-1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the approximately 2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar alpha-subunit expression in gill tissue from shrimps acclimated to 21 per thousand salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.
Read full abstract