Cement is an essential construction material due to its ability to flow before later setting, however the rheological properties must be tightly controlled. Despite this, much understanding remains empirical. Using a combination of continuous and oscillatory shear flow, we compare fresh Portland cement suspensions to previous measurements on model non-Brownian suspensions to gain a micro-physical understanding. Comparing steady and small-amplitude oscillatory shear, we reveal two distinct jamming concentrations, ϕμ and ϕrcp, where the respective yield stresses diverge. As in model suspensions, the steady-shear jamming point is notably below the oscillatory jamming point, ϕμ<ϕrcp, suggesting that it is tied to frictional particle contacts. These results indicate that recently established models for the rheology of frictional, adhesive non-Brownian suspensions can be applied to fresh cement pastes, offering a new framework to understand the role of additives and fillers. Such micro-physical understanding can guide formulation changes to improve performance and reduce environmental impact.
Read full abstract