Beauvericin (BEA), Enniatin B (ENN B), and Ochratoxin A (OTA) are mycotoxins produced by fungi species. Their main effect on several organs and systems is associated with chronic exposure going from immunotoxicity, estrogenic disorders, and renal failure to cancer (in animals and humans). OTA belongs to Group 1 according to the International Agency for Research in Cancer (IARC) and it has legislated limited values; not happening for BEA nor ENN B. Exposure to mixtures of mycotoxins occurs through food intake in daily consumption. The aim of this study was to evaluate the implication of BEA, ENN B, and OTA individually and combined in producing cytotoxicity in cells for immunological studies and cancer cell lines (human leukemia cells (HL-60), fresh human peripheral blood mononuclear cells (PBMCs), and human breast cancer (MDA-MB-231) cells). Cells were treated for 4 h and 24 h at different concentrations of BEA, ENN B, and OTA, respectively. Viability assays were carried out by flow cytometry using DAPI (4′,6-diamindino-2-phenylindole, dihydrochloride) as a viability dye and the potential effects of synergism, addition, and antagonism were assessed through the Chou and Talalay method. Individual OTA treatment exerted the greatest cytotoxicity for PBMC cells (IC50 0.5 μM) while ENN B for HL-60 (IC50 0.25 μM) and MDA-MB-231 (IC50 0.15 μM). In binary combination [ENN B + OTA] resulted in exerting the greatest cytotoxicity for HL-60 and MDA-MB-231 cells; while [BEA + OTA] in PBMC cells. The triple combination resulted in being highly cytotoxic for PBMC cells compared to HL-60 and MDA-MB-231 cells. In summary, PBMC cells were the most sensible cells for all three mycotoxins and the presence of OTA in any of the combinations had the greatest toxicity causing synergism as the most common cytotoxic effect.