Stemphylium leaf spot can result in significant losses to spinach seed, processing, and fresh market crops. Stemphylium isolates (n = 1,775) collected from 2000 to 2022 from spinach seed, leaves, and seed crop stem residues were used to assess the diversity of species associated with spinach. Eleven Stemphylium species were identified based on cmdA sequences: S. vesicarium (63.6% of isolates), S. beticola (48.9%), S. amaranthi (5.1%), S. eturmiunum (4.5%), S. astragali (4.0%), S. simmonsii (3.4%), and S. lucomagnoense, S. drummondii, S. gracilariae, S. lycopersici, and S. chrysanthemicola (each 0.6 to 1.7%). Only isolates of S. beticola, S. drummondii, and S. vesicarium were pathogenic to spinach. The incidence of spinach seed on which Stemphylium was observed ranged from 2.5 to 73.5% per seed lot, with S. vesicarium and S. beticola predominant. However, only 60.7 and 62.3% of isolates tested for these two species were pathogenic to spinach, respectively. Therefore, the incidence of Stemphylium species on spinach seed may not reflect accurately the risk of a seed lot carrying pathogenic isolates. Fused MAT1-1 and MAT1-2 genes were detected in isolates of S. vesicarium, but only MAT1-1 was detected in S. beticola isolates, which corroborates previous studies that have proposed the two species to be self-fertile. The duration of ascospore dispersal of S. beticola and S. vesicarium from spinach seed crop stem residues in western Washington, the primary region of spinach seed production in the United States, occurred from midwinter to late spring or early fall, potentially serving as inoculum for the next season's spinach seed crops. Growers should incorporate residues into the soil after harvest to reduce inoculum production of these pathogens on spinach seed crop residues.
Read full abstract