Frequency shifts of light scattered from either a deterministic or random medium have shown great importance in remote sensing imaging applications, however, such scattering system which combines random scatterer with obstacles has not been specifically discussed so far. To solve this problem, we derive analytical expressions for showing the phenomenon that the Young's pinhole wave scattered from a quasi-homogeneous (QH) medium exhibits the red shift of spectral lines, while the first-order Born approximation is applied to treat the weak scattering between the diffractive wave and the medium. The shifted amount of spectrum is strongly dependent of the scattering angle, correlation length of the medium, and Young's pinhole parameter. Furthermore, we also observe that the red shift of the scattered spectrum converts to the blue shift when the correlation length reaches a certain magnitude. Through numerical simulations, analyses are performed on revealing the effects of Young's pinhole parameter and medium's correlation on the spectral shift and spectral switch of the scattered spectrum.
Read full abstract