Application of frequency-dependent squeezed vacuum improves the force sensitivity of an optomechanical interferometer beyond the standard quantum limit by a factor of e-r, where r is the squeezing parameter. In this work, we show that the application of squeezed light along with quantum back-action nullifying meter in an optomechanical cavity with mechanical mirror in middle configuration can enhance the sensitivity beyond the standard quantum limit by a factor of e-reff, where reff = r + ln(4Δ/ζ)/2, for 0 < ζ/Δ < 1, with ζ as the optomechanical cavity decay rate and Δ as the detuning between cavity eigenfrequency and driving field. The technique described in this work is restricted to frequencies much smaller than the resonance frequency of the mechanical mirror. We further studied the sensitivity as a function of temperature, mechanical mirror reflectivity, and input laser power.