Traumatic axonal injury (TAI) is a common finding on magnetic resonance imaging (MRI) in patients with moderate-severe traumatic brain injury (TBI), and the burden of TAI is associated with outcome in this patient group. Lesion mapping offers a way to combine imaging findings from numerous individual patients into common lesion maps where the findings from a whole patient cohort can be assessed. The aim of this study was to evaluate the spatial distribution of TAI lesions on different MRI sequences and its associations to outcome with use of lesion mapping. Included prospectively were 269 patients (8-70 years) with moderate or severe TBI and MRI within six weeks after injury. The TAI lesions were evaluated and manually segmented on fluid-attenuated inversed recovery (FLAIR), diffusion weighted imaging (DWI), and either T2* gradient echo (T2*GRE) or susceptibility weighted imaging (SWI). The segmentations were registered to the Montreal Neurological Institute space and combined to lesion frequency distribution maps. Outcome was assessed with Glasgow Outcome Scale Extended (GOSE) score at 12 months. The frequency and distribution of TAI was assessed qualitatively by visual reading. Univariable associations to outcome were assessed qualitatively by visual reading and also quantitatively with use of voxel-based lesion-symptom mapping (VLSM). The highest frequency of TAI was found in the posterior half of corpus callosum. The frequency of TAI was higher in the frontal and temporal lobes than in the parietal and occipital lobes, and in the upper parts of the brainstem than in the lower. At the group level, all voxels in mesencephalon had TAI on FLAIR. The patients with poorest outcome (GOSE scores ≤4) had higher frequencies of TAI. On VLSM, poor outcome was associated with TAI lesions bilaterally in the splenium, the right side of tectum, tegmental mesencephalon, and pons. In conclusion, we found higher frequency of TAI in posterior corpus callosum, and TAI in splenium, mesencephalon, and pons were associated with poor outcome. If lesion frequency distribution maps containing outcome information based on imaging findings from numerous patients in the future can be compared with the imaging findings from individual patients, it would offer a new tool in the clinical workup and outcome prediction of the patient with TBI.
Read full abstract