Integrating advanced air mobility (AAM) into the logistics of high-value electronic commodities can enhance efficiency and promote sustainability. The objective of this study is to optimize the logistics network for high-value electronics by integrating AAM solutions, specifically using heavy-lift cargo drones for middle-mile transport and using the mostly rural and small urban U.S. state of North Dakota as a case study. The analysis utilized geographic information system (GIS) and spatial optimization models to strategically assign underutilized airports as multimodal freight hubs to facilitate the shift from long-haul trucks to middle-mile air transport. Key findings demonstrate that electronics, because of their high value-to-weight ratio, are ideally suited for air transport. Comparative analysis shows that transport by drones can reduce the average cost per ton by up to 60% compared to traditional trucking. Optimization results indicate that a small number of strategically placed logistical hubs can reduce average travel distances by more than 13% for last-mile deliveries. Cost analyses demonstrate the viability of drones for middle-mile transport, especially on lower-volume rural routes, highlighting their efficiency and flexibility. The study emphasizes the importance of utilizing existing infrastructure to optimize the logistics network. By replacing truck traffic with drones, AAM can mitigate road congestion, reduce emissions, and extend infrastructure lifespan. These insights have critical implications for supply chain managers, shippers, urban planners, and policymakers, providing a decision support system and a roadmap for integrating AAM into logistics strategies.
Read full abstract