The Ross operation for aortic valve disease has regained new interest due to its outstanding long-term results. Nonetheless, when employed as freestanding root replacement, the possible dilation of the pulmonary autograft and subsequent aortic regurgitation is described. Several animal models have been proposed. However, these are usually limited to ex-vivo models or in-vivo experiments with relatively expensive large animal models. In this study, we sought to establish a rodent model of pulmonary artery graft (PAG) implantation in a systemic position. A total of 39 adult Lewis rats were included. Immediately after euthanasia, the pulmonary root was harvested from a donor animal (n=17). Syngeneic recipient (n=17) and sham-operated (n=5) rats were sedated and ventilated. In the recipient group, the PAG was implanted with an end-to-end anastomosis in infra-renal abdominal aortic position. Sham-operated rats underwent only transection and re-anastomosis of the aorta. Animals were followed with serial ultrasound studies for two months and post-mortem histological analysis. The median PAG diameter in the native position was 3.20 mm (IQR=3.18-3.23). At follow-up, the median diameter of the PAG was 4.03 mm (IQR=3.74-4.13) at 1 week, 4.07 mm (IQR=3.80-4.28) at 1 month, and 4.27 mm (IQR=3.90-4.35) at 2 months (p<0.01). Peak systolic velocity was 220.07 mm/s (IQR=210.43-246.41) at 1 week, 430.88 mm/s (IQR=375.28-495.56) at 1 month, and 373.68 mm/s (IQR=305.78-429.81) at 2 months (p=0.02) and did not differ from the sham-operated group at the end of the experiment (p=0.5). Histological analysis did not show any sign of endothelial thrombosis. This study showed that rodent models may allow for the evaluation of the long-term adaptation of the pulmonary root to a high-pressure system. A systemically placed syngeneic PAG implantation represents a simple and feasible platform for the development and evaluation of novel surgical techniques and drug therapies to further improve the outcomes of the Ross operation.
Read full abstract