Dengue viral infections are a standout amongst the supreme critical mosquito-borne illnesses nowadays. They create problems like dengue fever (DF), dengue stun disorder (DSS) and dengue hemorrhagic fever (DHF). Lately, the frequency of DHF has expanded considerably. Dengue may be caused by one of serotypes DEN-1 to DEN-4. For the most part, septicity with one serotype presents upcoming defensive resistance against that specific serotype yet not against different serotypes. When anyone is infected for a second time with different serotypes, a serious ailment will occur. The proposed model focused on the dynamic interaction between susceptible cells and free virus cells. The ailment free steady states of the specimen are determined. The steadiness of the steady states has been examined by using Laplace transform. We introduce an appropriate numerical technique based on an Adams Bash-forth Moulton method for non-integer order delay differential equations. The numerical simulations validate the accuracy and efficacy of the numerical method. In this paper, we study a non-integer order model with temporal delay to elaborate the dynamics of Dengue internal transmission dynamics. The temporal delay is presented in the susceptible cell and free virus cell. Centered on non-integer Laplace transform, some environs on firmness and Hopf bifurcation are derived for the model. Beside these global stability analysis is also done. Lastly, the imitative theoretical results are justified by few numerical simulations. The study spectacles that the non-integer order with temporal-delay can successfully enhance the dynamics and rejuvenate the steadiness terms of non-integer order septicity prototypes. Both the ailment free equilibrium (AFE) node and ailment persistent equilibrium (APE) node are steady for the given system. We deduce a recipe that regulates the critical value at threshold.