AbstractThe turbulent transport of momentum, heat, and moisture can impact tropical cyclone intensity. However, representing subgrid‐scale turbulence accurately in numerical weather prediction models is challenging due to a lack of observational data. To address this issue, a case study of Hurricane Maria was conducted to analyse the influence of different free tropospheric turbulence parametrisations on sheared tropical cyclones. The study used the current Met Office Unified Model (MetUM) parametrisation, as well as a parametrisation scheme with significantly reduced free tropospheric mixing length. Convection‐permitting ensemble simulations were performed for both mixing schemes at two initialisation times (four 18‐member ensembles in total), revealing an improvement in the intensity forecasts of Hurricane Maria when the mixing length was decreased in the free troposphere. By implementing this change, the less diffuse simulations presented a drier mid‐level. The resolved downward transport of drier air from the mid‐levels into the inflow layer (so‐called “downdraft ventilation”) was thus more effective in reducing the storm's intensity. In contrast to earlier studies, where decreasing the diffusivity in the boundary layer intensified the storm, we show that decreasing the free tropospheric diffusivity can weaken the storm by enhancing shear‐related weakening processes. While this study was performed using the MetUM, the findings highlight the general importance of considering turbulence parametrisation, and show that changes in diffusivity can have different impacts on storm intensity depending on the environment and where the changes are applied.
Read full abstract