AbstractRecent observations show that certain rupture phase can propagate backward relative to the earlier one during a single earthquake event. Such back‐propagating rupture (BPR) was not well considered by the conventional earthquake source studies and remains a mystery to the seismological community. Here we present a comprehensive analysis of BPR, by combining theoretical considerations, numerical simulations, and observational evidences. First, we argue that BPR in terms of back‐propagating stress wave is an intrinsic feature during dynamic ruptures; however, its signature can be easily masked by the destructive interference behind the primary rupture front. Then, we propose an idea that perturbation to an otherwise smooth rupture process may make some phases of BPR observable. We test and verify this idea by numerically simulating rupture propagation under a variety of perturbations, including a sudden change of stress, bulk or interfacial property and fault geometry along rupture propagation path. We further cross‐validate the numerical results by available observations from laboratory and natural earthquakes, and confirm that rupture “reflection” at free surface, rupture coalescence and breakage of prominent asperity are very efficient for exciting observable BPR. Based on the simulated and observed results, we classify BPR into two general types: interface wave and high‐order re‐rupture, depending on the stress recovery and drop before and after the arrival of BPR, respectively. Our work clarifies the nature and excitation of BPR, and can help improve the understanding of earthquake physics, the inference of fault property distribution and evolution, and the assessment of earthquake hazard.
Read full abstract