An alternative synthetic pathway was proposed for the optimization of synthesis to find a better correlation between the swelling and elasticity of hyaluronic acid-interpenetrated gels via temperature regulation. An experimental design methodology was presented for the synthesis of polyacrylamide/poly(acrylic acid sodium salt)/hyaluronic acid, PAAm/PSA/HyA, gels by modifying the one-pot procedure using free radical crosslinking copolymerization of AAm with the addition of anionic linear PSA chains in the presence of various amount of HyA, ranging between 0.05% and 0.20% (w/v). Semi-interpenetrated polymer network (IPN)-structured gels were designed with tunable elasticity, in which the extent of covalent crosslinking interactions is controlled by polymerization temperature ranging between -18 and 45 °C. Depending on the HyA content added in the synthesis and the polymerization temperature, the swelling ratio could be controlled. The addition of 0.05% (w/v) HyA increased the swelling of semi-IPNs, while the elastic modulus increased with increasing HyA content and decreased with the polymerization temperature. PAAm/PSA/HyA semi-IPNs showed the typical pH-sensitive swelling of anionic gels, and the swelling reached a maximum at a pH of 11.2. PAAm/PSA/HyA gels were tested for the removal of methyl violet from wastewater. Adsorption kinetics were shown to be well-fitted with the pseudo-second-order model using linear and nonlinear regression analysis. With the clear relationship between increased modulus and composition, this study enabled the fine-tuning of semi-IPN interactions by varying the polymerization temperature.
Read full abstract