Abstract. The article discusses the calculation of the temperature regime in nanoscale AlAs/GaAs binary heterostructures. When modeling heat transfer in nanocomposites, it is important to take into account that heat dissipation in multilayer structures with layer sizes of the order of the mean free path of energy carriers (phonons and electrons) occurs not at the lattice, but at the layer boundaries (interfaces). In this regard, the use of classical numerical models based on the Fourier law is limited, because it gives significant errors. To obtain more accurate results, we used a model in which the heat distribution was assumed to be constant inside the layer, while the temperature was stepwise changed at the interfaces of the layers. A hybrid approach was used for the calculation: a finite−difference method with an implicit scheme for time approximation and a mesh−free model based on a set of radial basis functions for spatial approximation. The calculation of the parameters of the bases was carried out through the solution of the systems of linear algebraic equations. In this case, only weights of neuroelements were selected, and the centers and «widths» were fixed. As an approximator, a set of frequently used basic functions was considered. To increase the speed of calculations, the algorithm was parallelized. Calculation times were measured to estimate the performance gains using the parallel implementation of the method.
Read full abstract