Chronic alcohol consumption is a major reason for several human diseases, and alcoholism has been associated with a variety of societal problems. Changes in fatty acid metabolism in alcoholics and its effects leading to membrane damage are largely unknown. Therefore, we aimed to investigate the fatty acid composition of erythrocyte membrane phospholipids in relation with plasma lipid profile and other plasma metabolites in chronic alcoholics in comparison with controls. We systematically measured the levels of glucose, lactate and pyruvate in the blood and free amino acids, free fatty acids, mucoproteins and glycolipids, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein (VLDL) cholesterol and triglycerides (TG) in plasma of chronic alcoholics and controls. Furthermore, we measured fatty acid composition by gas chromatographic analysis. The fatty acid composition clearly revealed certain changes in chronic alcoholic erythrocyte membrane, chiefly increments in C16:0 and a decrease in C22:4 and C22:6 fatty acids besides the presence of unidentified fatty acids, probably C-24 or C-26 fatty acids. In addition, a significant increase in blood lactate, decrease in blood pyruvate and increased levels of free amino acids and free fatty acids, mucoproteins, VLDL cholesterol, TG and HDL-C in chronic alcoholics were observed with no significant change in plasma TC, LDL-C and glycolipids when compared with controls. Alcohol-induced alterations in plasma and erythrocyte membranes of chronic alcoholics in the present study might be an adaptive response to counteract the deleterious effects of alcohol. The implications of our findings warrant further investigation and needs further in-depth study to explore the mechanisms of alcohol-induced membrane changes.
Read full abstract