The collision restitution coefficient (CRC) is the essential parameter of the discrete element method (DEM) to study the interaction mechanism between corn seed and soil. The accuracy of its measurement results is the criticalness to ensuring simulation accuracy. In the current study, the CRC between corn seed and soil is mainly measured by the method of corn seed colliding with soil. However, since the soil is a granular body, the essence of the collision of corn seed with soil is the collision between one corn seed and a quantity of soil particles, resulting in inaccurate measurement results soil particles. Therefore, based on the collision dynamics theory of mass point and fixed surface, this paper proposed a measurement method of CRC to study the interaction mechanism between corn seed and soil. This paper analyzed the influence of mass point selection on the measurement results of CRC in the collision process. The measurement method was determined by taking soil particle as mass point and corn seed as fixed surface. To verify the feasibility of this method, a CRC measurement system was established based on high-speed camera technology. The soil particle was dropped at the heights of 10, 15, 20, and 25 cm to collide with the corn seed. The separation velocity and approaching velocity of the soil particle was measured to obtain the CRC between the corn seed and soil. Taking the CRC as the essential parameter of discrete element simulation, the discrete element simulation experiment (DESE) and the soil bin experiment (SBE)of corn seed free fall impact on soil were carried out, and the experiment results were compared and analyzed. In the experiment, the falling height (40, 50, 60, 70 cm) of corn seed and the touching position of the corn seed (positions a, b, c, d) were taken as the influencing factors. The movement state of corn seed and the separation approaching velocity ratio (SAVR) ξ during the collision were taken as the indexes. The results showed that when the positions of corn seed touched the soil was the same, with the increase of the falling height, the SAVR ξ obtained from the DESE and the SBE showed a downward trend. When the falling height was the same, and the corn seed touched the soil at positions b, c, and d, the motion state in the DESE was basically the same as that in the SBE. The relative error of the SAVR between the DESE and the SBE was less than 10%, which proves the feasibility of the method proposed in this paper. The measurement method of the CRC between corn seed and soil proposed in this study provided a theoretical research basis for clarifying the interaction mechanism between corn seed and soil and solving the seed bouncing in high-speed precision sowing.
Read full abstract