Mineral exploration through regolith-dominated terrains poses a significant challenge to cost-effective exploration techniques. Due to missing surface expression, undercover mineral exploration relies on understanding ore-forming processes and characterizing alteration regimes to decipher suitable vectors towards ore deposits. The work presented focuses on the Archean granite-greenstones of the Yilgarn Craton, east of the Meekatharra area in Western Australia, and characterizes the weathering profiles by understanding metal dispersion mechanisms and identifying mineralogical vectors towards gold mineralization within regolith. Mineral mapping of gold mineralization using TESCAN Integrated Mineral Analyzer and laser ablation ICP-MS shows gold is associated with multiple generations of pyrite, and base metal sulfides and sulfosalts hosted in felsic to intermediate volcanics and volcaniclastics. Intensive weathering generated a thick regolith profile dominated by a leached zone of kaolinitic and micaceous saprolite underlain by a supergene Au-Cu deposit blanket at the base. The supergene deposit is dominated by colloform and framboidal pyrite, with pure microcrystalline Au, chalcocite, bornite, malachite, and alunite. Hyperspectral analyses were used to trace the composition and abundance of chlorite and white mica variations in the host rock and the weathering profile. The mineral assemblage in the hydrothermal alteration halo proximal to and intersecting gold mineralization is dominated by Fe-rich chlorite and Na-rich white mica (paragonite). Fe-rich chlorite and paragonite are spatially tied to elevated Au concentration and trends to Fe-Mg-rich chlorite and K-rich white mica (muscovite) distal to the alteration. The variations in chlorite chemistry were detected mainly in bedrock and saprock. Conversely, the white mica chemistry variations were detected in bedrock and the regolith profile, in which white micas resist intensive weathering. The spectral signatures identified through short-wave and thermal infrared data are verified through X-ray diffraction, mineral chemistry, and bulk geochemical analyses. This distinctive spectral signature of white mica and chlorite is a cost-effective exploration method for regional mapping of mineral systems to identify hydrothermal alteration footprints in the regolith developed over felsic and intermediate rocks.