Polyethylene and polystyrene are massively used around the world in various applications and are the most abundant plastic waste. Once in the marine environment, under the influence of physical and chemical factors, plastic products degrade, changing from the size category of macroplastics to microplastics. In order to study the effect of plastic on marine organisms, we modeled the conditions of environmental pollution with different-sized plastic-polystyrene microparticles of 0.9 µm and macro-sized polyethylene fragments of 10 cm-and compared their effect on biochemical parameters in the tissues of the bivalve mollusk Mytilus trossulus. Using biomarkers, it was found that regardless of the size and type of polymer, polystyrene microparticles and polyethylene macrofragments induced the development of oxidative stress in mussels. A significant decrease in the level of lysosomal stability in mussel hemocytes was observed. Increases in the level of DNA damage and the concentration of malonic dialdehyde in the cells of gills and the digestive gland were also shown. The level of total antiradical activity in cells varied and had a tissue-specific character. It was shown that both ingested polystyrene particles and leachable chemical compounds from polyethylene are toxic for mussels.
Read full abstract