In this study, the enzymatic hydrolysates of skipjack tuna, Katsuwonus pelamis, were purified by ultrafiltration and further identified through micro-ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (micro-UPLC-QTOF-MS). The potential umami peptides were identified using both conventional collision-induced dissociation (CID) and novel electron-activated dissociation (EAD) fragmentation techniques. Nine novel umami peptides with iUmami-SCM > 588 were screened. Sensory evaluation and electronic tongue analysis were performed to confirm the taste characteristics of the umami peptides, indicating that these umami peptides all exhibited varying degrees of umami taste. Molecular docking and molecular dynamics simulation were utilized to investigate the interaction with T1R1/T1R3 taste receptors. The docking results revealed that Asp234, Ser23, Glu231, and Ile237 appeared most frequently in all docking sites and formed stable complexes through hydrogen bonding and electrostatic interactions. Furthermore, molecular dynamics simulation allowed for a more comprehensive analysis of their interactions within a dynamic environment, providing a deeper understanding of the umami perception mechanism involving umami peptides and receptors.