Diagenesis in the Penrith Sandstone is characterized by early hematite and mixed illite/smectite cementation, followed by burial compaction, feldspar and two episodes of quartz cementation. The primary quartz overgrowths are characterized by heterogenous luminescence; however, the secondary quartz overgrowths are characterized by thinner and darker luminescence. Cataclasis post-dates primary quartz cementation, and significantly reduces grain and pore aperture size. The apex of mercury volume for a deformed sample was reduced up to three times in comparison with the undeformed rock. Dissolution occurred during cataclasis as authigenic hematite was removed in deformation zones, improving pore aperture size and consequently enhancing sandstone porosity and permeability. Recent fracturing created fractured-pores and improved porosity and permeability in tight cataclastic samples. Evidence for syn-cataclastic dissolution is observed in the samples studied. This is indicated by the dissolution of authigenic feldspars and the enhancement of poroperm parameters adjacent to cataclastic zones and the absence of hematite cement within them. Based on those the sequence of diagenetic evolution in the Penrith Sandstone can be reconstructed. Host samples were characterized by good to very good poroperm values, varying between 20 and 24% porosity and from 809÷1445 mD permeability. Cataclastic core plugs have 13÷21% porosity and 0.12÷39 mD permeability. The porosity reduction by cataclasis was estimated to be as much as 4.5% on average. Fracturing and dissolution improved poroperm parameters in studied samples. Recently fractured core plugs have about 292 mD permeability on average. Dissolution-cataclastic samples have 32% porosity and 18 mD permeability, whereas dissolution-host samples have 31% porosity and maximum permeability as much as 2469 mD on average. Cataclasis occurred in combination with in situ significant reservoir dissolution and fracturing may improve a sandstone reservoir in excellent quality.
Read full abstract