We investigated the mechanisms that control Sb(V) sorption and coprecipitation with ferrihydrite across a range of Sb(V) loadings, and examined the associated effects on Sb(V) extractability during the commonly-applied 1 M HCl extraction scheme and the BCR and Wenzel sequential extraction schemes. EXAFS spectroscopy reveals that Sb(V) sorption and coprecipitation mainly involved Sb(V) incorporation into the ferrihydrite structure via edge sharing and double-corner sharing between SbO6 and FeO6 octahedra. Large amounts of these linkages partially stabilized ferrihydrite against extraction with 1 M HCl. Negligible (< 0.5 %) ferrihydrite-bound Sb(V) was recovered in the “acid extractable” and “reducible” fractions of the BCR scheme, while 1–16 % was recovered in the “oxidizable” fraction. As such, the BCR scheme risks ferrihydrite-bound Sb(V) being misidentified as Sb residing mainly in “residual” phases. In contrast, in the Wenzel scheme, almost all sorbed- and coprecipitated-Sb(V) was recovered in the “amorphous hydrous oxide-bound” fraction, with only 0.6–3.3 % in the “specifically-bound” fraction (consistent with our finding of Sb(V) retention via incorporation into ferrihydrite, as opposed to adsorption by the ferrihydrite surface). Collectively, the results provide new insights into the retention mechanisms and extraction behaviour of ferrihydrite-bound Sb(V), enhancing our ability to assess Sb contamination in soils, sediments and geogenic wastes.
Read full abstract