A clutter is a family of sets, called members, such that no member contains another. It is called intersecting if every two members intersect, but not all members have a common element. Dense clutters additionally do not have a fractional packing of value 2. We are looking at certain substructures of clutters, namely minors and restrictions. For a family of clutters we introduce a general sufficient condition such that for every clutter we can decide whether the clutter has a restriction in that set in polynomial time. It is known that the sets of intersecting and dense clutters satisfy this condition. For intersecting clutters we generalize the statement to k-wise intersecting clutters using a much simpler proof. We also give a simplified proof that a dense clutter with no proper dense minor is either a delta or the blocker of an extended odd hole. This simplification reduces the running time of the algorithm for finding a delta or the blocker of an extended odd hole minor from previously O(n4)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathscr {O}}(n^4)$$\\end{document} to O(n3)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathscr {O}}(n^3)$$\\end{document} filter oracle calls.