In this article, we investigate a couple of nonlinear time-fractional evolution equations, namely the cubic-quintic-septic-nonic equation and the Davey–Stewartson (DS) equation, both of which have significant applications in complex physical phenomena such as fiber optical communication, optical signal processing, and nonlinear optics. Using a powerful technique named the extended generalized Kudryashov approach, we extract different rich structured soliton solutions to these models, including bell-shaped, cuspon, parabolic soliton, singular soliton, and squeezed bell-shaped soliton. We also study the impact of fractional-order derivatives on these solutions, providing new insights into the dynamics of nonlinear models. The results are compared with the existing literature, revealing novel and distinct solutions that offer a deeper understanding of these fractional models. The results show that the implemented approach is useful, reliable, and compatible for examining fractional nonlinear evolution equations in applied science and engineering.