Endoplasmic reticulum stress (ERS) plays crucial roles in maintaining regulatory T cells (Treg) stability and function, yet the underlying mechanism remains largely unexplored. Here we demonstrate that ERS-related protein transmembrane p24 trafficking protein 4 (TMED4) Treg-specific knockout (Tmed4ΔTreg) mice contain more Treg cells with impaired Foxp3 stability, Treg signature and suppressive activity, which leads to T cell hyperactivation, exacerbated inflammatory phenotype and boosted anti-tumor immunity in mice. Mechanistically, loss of Tmed4 causes defects in ERS and nuclear factor erythroid 2-related factor 2 (NRF2)-related antioxidant response, which results in excessive reactive oxygen species (ROS) that reduces Foxp3 stability and suppressive function of Treg cells in an IRE1α-XBP1 axis-dependent manner. The abnormalities can be effectively rescued by ROS scavenger, NRF2 inducer or forcible expression of IRE1α. Moreover, TMED4 suppresses IRE1α proteosome degradation via the ER-associated degradation (ERAD) system including BIP. Our study reveals that TMED4 maintains Treg cell stability and suppressive function through IRE1α-dependent ROS and the NRF2-related antioxidant response.
Read full abstract