Countable families of global-in-time and blow-up similarity sign-changing patterns of the Cauchy problem for the fourth-order thin film equation (TFE-4) $$u_t=-\nabla \cdot \left(|u|^n \nabla \Delta u\right) \quad {\rm in} \quad \mathbb{R}^{N}\times\mathbb{R}_{+} \quad{\rm where}\quad n >0 ,$$are studied. The similarity solutions are of standard “forward” and “backward” forms $$\begin{array}{ll}u_{\pm}(x,t)\,=\,(\pm t)^{-\alpha}\, f(y), \quad y=x/(\pm t)^\beta,\\ \beta\,=\, \frac {1-\alpha n}{4}, \quad \pm t > 0, \quad {\rm where }\,f\, {\rm solve}\\ \quad\quad{\bf B}^{\pm}_{n} (\alpha,\,f)\,\equiv\, - \nabla \cdot \left(|f|^n \nabla \Delta f\right) \pm \beta y \cdot\nabla f\pm\alpha f=0 \quad {\rm in} \quad \mathbb{R}^{N}, \quad\quad(0.1)\end{array}$$and \({\alpha \in \mathbb{R}}\) is a parameter (a “nonlinear eigenvalue”). The sign “ + ”, i.e., t > 0, corresponds to global asymptotics as t → + ∞, while “−” (t < 0) yields blow-up limits t → 0− describing possible “micro-scale” (multiple zero) structures of solutions of the PDE. To get a countable set of nonlinear pairs {f γ , α γ }, a bifurcation-branching analysis is performed by using a homotopy path n → 0+ in (0.1), where \({{\bf B}_{0}^{\pm}\,(\alpha,f)}\) become associated with a pair {B, B*} of linear non-self-adjoint operators$${\bf B}=-\Delta^2 + \frac {1}{4}\, y \cdot \nabla + \frac {N}{4} \, I \quad {\rm and} \quad {\bf B}^* =- \Delta^2-\frac {1}{4}\, y\cdot\nabla\left({\rm so}\quad ({\bf B})^*_{L^2}={\bf B}^*\right),$$which are known to possess a discrete real spectrum, \({\sigma({\bf B})=\sigma({\bf B}^*)= \left\{ \lambda_ \gamma= - \frac{|\gamma|}{4}\right\}_{|\gamma| \ge 0}\,\, (\gamma\,{\rm is\, a\, multiindex\, in}\, \mathbb{R}^{N})}\). These operators occur after corresponding global and blow-up scaling of the classic bi-harmonic equation u t = − Δ2 u. This allows us to trace out the origin of a countable family of n-branches of nonlinear eigenfunctions by using simple or semisimple eigenvalues of the linear operators {B, B*} leading to important properties of oscillatory sign-changing nonlinear patterns of the TFE, at least, for small n > 0.