There are great challenges in the generation of higher-order modes for long period fiber grating (LPFG). The cross-coupling coefficient between the fundamental mode and the higher-order azimuthal modes is extremely small due to the difficulty of angular modulation with traditional methods. Therefore, how to generate higher-order orbital angular momentum (OAM) modes with a high efficiency and low insertion loss is an urgent problem to be solved. In this paper, an efficient all-fiber approach to generate fourth-order OAM mode by employing a preset twisted LPFG (PT-LPFG) in a few-mode fiber (FMF) is presented. The difficulty of generating fourth-order mode utilizing traditional single-side exposure carbon dioxide laser manufacturing method and the advantages of the PT-LPFG in enhancing the coupling coefficient are theoretically analyzed in detail. In experiment, the conversion from the fundamental mode to the fourth-order mode is achieved, and the fourth-order interference patterns demonstrated the successful generation of the OAM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">±4</sub> modes. The conversion efficiency of the OAM modes is over 99% and the purity is measured to be more than 90%. To the best of our knowledge, this is the first time to generate the fourth-order OAM mode in an all-fiber system using single long-period fiber grating.
Read full abstract