Optical diffraction tomography (ODT) is a promising label-free imaging method capable of quantitatively measuring the three-dimensional (3D) refractive index distribution of transparent samples. In recent years, partially coherent ODT (PC-ODT) has attracted increasing attention due to its system simplicity and absence of laser speckle noise. Quantitative phase imaging (QPI) technologies represented by Fourier ptychographic microscopy (FPM), differential phase contrast (DPC) imaging and intensity diffraction tomography (IDT) need to collect several or hundreds of intensity images, which usually introduce motion artifacts when shooting fast-moving targets, leading to a decrease in image quality. Hence, a quantitative real-time phase microscopy (qRPM) for extended depth of field (DOF) imaging based on 3D single-shot differential phase contrast (ssDPC) imaging method is proposed in this research study. qRPM incorporates a microlens array (MLA) to simultaneously collect spatial information and angular information. In subsequent optical information processing, a deconvolution method is used to obtain intensity stacks under different illumination angles in a raw light field image. Importing the obtained intensity stack into the 3D DPC imaging model is able to finally obtain the 3D refractive index distribution. The captured four-dimensional light field information enables the reconstruction of 3D information in a single snapshot and extending the DOF of qRPM. The imaging capability of the proposed qRPM system is experimental verified on different samples, achieve single-exposure 3D label-free imaging with an extended DOF for 160 µm which is nearly 30 times higher than the traditional microscope system.