Radio frequency interference (RFI) poses major threats to synthetic aperture radar (SAR) systems. Due to the suppression of useful target signals via high-power RFI, the SAR imaging quality is severely degraded. Nevertheless, existing studies on RFI mitigation mainly focus on narrowband filtering, while wideband RFI mitigation methods are relatively lacking and perform non-robustly. In this paper, an RFI mitigation scheme is proposed based on instantaneous spectrum forward consecutive mean excision (FCME), which is suitable for both narrowband and wideband RFI mitigation. The SAR echo signal is first transformed into a time–frequency (TF) domain through a short-time Fourier transform (STFT). On this basis, the instantaneous spectra polluted via RFI are detected via a kurtosis-based statistical test and then filtered via FCME to achieve RFI mitigation. Finally, connected component analysis is applied as a safety measure so as to avoid the unnecessary loss of useful target signal. The combination of FCME and connected component analysis enables the proposed method to thoroughly filter out RFI while retaining more useful target signals compared with other competing methods. The experimental results on real SAR raw data validate the effectiveness of the proposed method.
Read full abstract