The biological function of inhibin is mediated by two heterodimers, inhibin-A and inhibin-B. The relative importance of inhibin-A and –B in male reproductive function varies considerably across species with inhibin-B predominating in many species, whereas inhibin-A appears relatively more important in rams. Research reported to date in stallions has examined total or immunoreactive (ir) inhibin which does not distinguish the two heterodimers. Therefore, the objective of this study was to characterize changes in inhibin-A and inhibin-B concentrations in stallions: 1) across season for a period of one year, and 2) after downregulation of the hypothalamic-pituitary-gonadal (HPG) axis. In Study one, serum samples were obtained monthly from five stallions for a period of one year. Serum concentrations of inhibin-A, inhibin-B, testosterone and estrone sulfate were determined by ELISA. In Study two, stallions were treated with the GnRH antagonist, acyline (n = 4; 330 mg/kg acyline IM) or vehicle control (n = 4; vehicle alone) every five days for 50 days. Plasma concentrations of inhibin-A and –B were determined by ELISA at Days 0, 6, 12, 22, 37, 59, 80, 87 and 104 after initiation of acyline treatment. Testis volume was determined by ultrasonography at weekly intervals. In Study 1, both inhibin-A and inhibin-B showed seasonal changes in concentration with highest concentrations in increasing day length and lowest concentrations in short day lengths. Inhibin-B (overall mean 107.8 ± 4.1 pg/mL) was present at 4.7-fold higher concentrations in serum than inhibin-A (overall mean 23.0 ± 0.7 pg/mL). In Study 2, plasma concentrations of inhibin-B but not inhibin-A were significantly downregulated by administration of the GnRH antagonist, acyline. When the HPG axis was downregulated by acyline, testis volume was strongly correlated with inhibin-B (r = 0.73; P < 0.05) but not inhibin-A (r = 0.22; P = 0.20). In summary, inhibin-B appears to be the predominant form of inhibin in the stallion which undergoes seasonal regulation along with other reproductive parameters and is co-regulated with other endocrine parameters of the HPG axis.
Read full abstract