BACKGROUND: Taking into account the importance of GABAergic brain system research and also the opportunity to achieve specific and accurate results in laboratory studies using immunohistochemical approaches, it seems important to have a reliable method of visualization GABA-synthesizing cells, their projections and synapses, for the morphofunctional analysis of GABAergic system both in normal conditions and in the experimental pathology.
 AIM: The aim of the study was to visualize analyze GABAergic neurons and synapses within rats brain using three different antibody types against glutamate decarboxylase and to identify the optimal conditions for reaction performing.
 MATERIALS AND METHODS: The study was performed on paraffin brain tissue sections of 5 adult Wistar rats. Immunohistochemical reactions using three antibody types against glutamate decarboxylase isoform 67 (GAD67) and glutamate decarboxylase isoform 65 (GAD65) were performed. Additional controls on C57/Bl6 mice and Chinchilla rabbits brain samples were also carried out.
 RESULTS: Antibodies used in the research made it possible to achieve high quality of GABAergic structures visualizing without increasing background staining. At the same time different antibody types are distinct in their efficacy to perform immunohistochemistry reaction on laboratory animal brain tissue samples. By performing additional controls, we discovered that there is necessary to adsorb secondary reagents immunoglobulins in order to eliminate nonspecific staining. It was found that GAD67 and GAD65 distribution in rat forebrain structures is different. It was stated that GAD67 immunohistochemistry most completely reveals GABAergic brain structures compared to GAD65 immunhistochemistry. The possibility of determining morphological features of GABAergic neurons and synaptic terminals, as well as performing quantitative analysis, was demonstrated.
 CONCLUSIONS: The approach proposed makes it possible to specifically visualize GABAergic structures of the central nervous system of different laboratory animals. This could be useful both in fundamental studies and in pathology research.
Read full abstract