Inflammation-induced intestinal epithelial barrier (IEB) dysfunction is one of the important reasons for the occurrence and development of intestinal inflammatory-related diseases, including ulcerative colitis (UC), Crohn's disease and necrotizing enterocolitis (NEC). Dragon's blood (DB) is a traditional Chinese medicine and has been clinically used to treat UC. However, the protective mechanism of DB on intestinal inflammatory-related diseases has still not been elucidated. The present study aimed to explore the protection mechanism of DB on IEB dysfunction in rat ileum and human colorectal adenocarcinoma cells (Caco-2)/human umbilical vein endothelial cells (HUVECs) coculture system induced by lipopolysaccharide (LPS). DB could ameliorate rat ileum mucosa morphological injury, reduce the accumulation of lipid-peroxidation products and increase the expression of junction proteins. DB also alleviated LPS-induced Caco-2 cells barrier integrity destruction in Caco-2/ HUVECs coculture system, leading to increased trans-endothelial electrical resistance (TEER), reduced cell permeability, and upregulation of expressions of F-actin and junction proteins. DB contributed to the assembly of actin cytoskeleton by upregulating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway and contributed to the formation of intercellular junctions by downregulating TLR4-MyD88-NF-κB pathway, thus reversing LPS-induced IEB dysfunction. These novel findings illustrated the potential protective mechanism of DB on intestinal inflammatory-related diseases and might be useful for further clinical application of DB.