This study explores the synthesis and electrocatalytic performance of copper-nitrogen-carbon composites formed by Cu single atoms/clusters embedded in nitrogen-doped carbon with Cu/Cu2O nanoparticles (Cu-X-NC) for the oxygen reduction reaction (ORR). The catalysts were synthesized using polydopamine as a carbon and nitrogen source via the solvothermal carbonization (STC) method, followed by pyrolysis and acid washing. The effect of solvothermal carbonization temperature (120, 150, and 180 ºC) on the structure and ORR activity was investigated. The physicochemical characterization showed that higher STC temperatures reduced the size of copper crystallites, slightly increased the formation of copper(I) oxide, and led to the creation of well-dispersed copper single atoms/clusters at 150°C. This optimal dispersion enhances the interaction between the copper single atoms and the reactants, leading to faster ORR kinetics, as demonstrated by the lower charge transfer resistance values in electrochemical impedance spectroscopy measurements. Additionally, the balance between micropore and mesopore structures at this temperature facilitates efficient mass transport, which is critical for achieving higher ORR activity. Moreover, accelerated stability tests showed excellent durability for Cu-150-NC, with negligible loss in onset potential after 10,000 cycles. The solvothermal process significantly increased the electrochemically active surface area (ECSA), with Cu-150-NC displaying the highest specific activity and mass activity per gram of copper, indicating superior performance. Overall, these findings underscore the importance of synthesis optimization and provide valuable insights for designing eco-friendly and high-performance copper catalysts for fuel cell applications.
Read full abstract